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The Diffraction of X-rays by Close-packed Crystals Containing both 'Growth 
Stacking Faults' and 'Deformation or Transformation Stacking Faults' 
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The general theory is developed of the X-ray diffraction effects exhibited by (a) different close- 
packed structures (h, IC, hic, hlck, hhic, hhicic types) containing 'growth stacking faults', assuming a 
four-layer influence; (b) hexagonal and close-packed cubic crystals in which 'growth stacking 
faults' and 'deformation or transformation stacking faults' coexist; and (c) hic- and hicic-crystals 
(SiC-4H and SiC-6H types) containing 'deformation stacking faults'. 

The manner in which a 'fault' of the first or second type disturbs the regular sequences of the 
layers is stated in a general way. Expressions are derived for the reciprocal-space intensity dis- 
tribution as a function of the parameters (four, two, one, one in the different cases) which 
describe the densities of the faults. I t  is shown how these parameters can be determined 
from measurements of the X-ray intensities or the displacements of the peaks of the diffuse re- 
flexions. 

1. Introduct ion 

If a crystal lattice can be described as the super- 
position of close-packed layers in a well defined 
manner, stacking 'disorder' arises whenever errors are 
introduced into the regular sequence of the layers. 

2. Influence of the 'faults' upon the sequence  of 
the layers  

The notat ion h or/C means tha t  the layer is arranged 
with respect to the two preceding ones in a hexagonal 
or cubic manner. The regular sequences of the layers 
in a close-packed crystal can then generally be re- 
presented by symbols, e.g. h/C/C (Jagodzinski, 1949a), 
and this means tha t  a regular sequence can be con- 
structed by periodic repetition of tha t  prescription, 
start ing with two layers. 

The irregular sequence of the layers in a close-packed 
crystal can however only be described with the aid 
of the transition probabilities, which define the one- 
dimensional disorder. 

Two types of 'faults '  will be considered here. 

(A ) 'Growth stac/cing faults'  
A 'stacking fault '  is a 'growth fault '  if it arises 

during growth. 
We shall say tha t  an 'n-layer'  influence is present 

whenever the way in which a new layer is added 
depends on the arrangement of the n preceding ones. 
A 'growth fault '  occurs when the growth prescription 
is not  followed in the new layer. 

Since n layers may  be arranged in 2 n-2 ways (/ch)i, 
we have to introduce in this case 2 n-2 parameters, ~i, 
which are the transition probabilities for continuing 
the sequence in the cubic way. The irregular sequence 
is then described statistically by the expressions eoi, 

which are the probabilities tha t  n successive layers 
are in a (kh)i arrangement.  

Wilson (1942) and Hendricks & Teller (1942) dealt 
with n - - -2 ,  Jagodzinski (1949b) with n = 3 and 
Gevers (1952) treated two special cases n = 4 and 
n - 6 .  

In  § 3 of this article we shall give the general 
calculations for n = 4, using the method of Wilson 
(1942). 

In  this case the continuation of the irregular stacking 
of the close-packed layers is described by  the rule: 

-~ h probabil i ty 1 - ~ i  (la) 
(/ch)i-- 

/C probabil i ty ai (lb) 

if (/ch)l = hh, (/ch)~ =/ch, (/ch)3 = Me, (kh)4 = / ck .  (lc) 

(B) 'Deformation or transformation stacking faults '  
Imagine an extended block of a crystal  based on 

any pattern,  regular or irregular. If one half moves 
relative to the other, so tha t  the discontinuity is 
confined to one layer only, we have a 'deformation 
fault '  occurring at the discontinuity and characterized 
by a continuance of the displacement throughout  
subsequent layers. 

If the displacement is so tha t  one part  of the crystal  
shifts out of the hollows of the layer beneath it  into 
a possible neighbouring set of hollows of the other 
type, the 'fault '  is a 'stacking fault '  and the result is 
a change of type  in the layers, beginning with the one 
in which the discontinuity occurs. 

Symbolically we have 

either A ~ B, B --> C, C --> A , (2a) 

or A -> C, B --> A, C -~ B .  (2b) 

A C 7  22 
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Both displacements can be characterized by a vector, 
respectively 

d i = ½a i + ] a ,  
and 

d z = ~}a i +  ½a~ 

(a l, a~: translation vectors of the close-packed layer). 
I t  is clear that  we have: 

[ d i + d  i = d~, (3a) 

d i + d  2 = 0 (rood. a lattice vector), (3b) 

d 2 + d  z = d i . (3c) 

This type of 'fault '  can be produced either during 
plastic deformation or during certain phase transforma- 
tions or even spontaneously at an appropriate tem- 
perature. 

A 'deformation or transformation fault '  not only 
changes the arrangement (h or/C) of the layer in which 
the discontinuity occurs, but also that  of the next 
one. 

where the arrangements of the four layers are again 
indicated. 

This scheme proves clearly that  the arrangement 
of the layer in which the discontinuity occurs and that  
of the next one are both changed (h -->/C,/C --> h). The 
arrangement h or/C of the other layers is not altered 
by the process, since the three layers, which form the 
arrangement h or /C, are all either displaced or not. 

From now on we shall call the layer itself in which 
the discontinuity occurs 'a deformation or transforma- 
tion stacMng fault', and it will be marked with a clash 
(A', . . . ,  h',/C'). 

Paterson (1952) has considered the case of a close- 
packed cubic crystal with randomly distributed 'de- 
formation stacking faults'. 

In  §§ 5 and 6 we shall deal with the pattern of the 
Me- and h/c/c-type (ABAC and ABCACB)  (SiC-4H and 
SiC-6H type), where the regular sequence is disturbed 
by the occurrence of randomly distributed 'deforma- 
tion faults' with density ft. 

. . . X Y  

. ) X  

~ Z  

> Y . . .  

) Y . . .  

- - - - ~  X .  • • 

Fig. 1. 

. . . X Y - - I  

-+Z 

~ X  

k > X . . .  

h ~ y . . .  

k 
> Z ° , ,  

h > y . . .  

Fig. 2. 

Indeed, when X, Y, Z stand respectively for A (B, C), 
fl or C (C or A, A or B), c or B (A or C, B or A), 
Fig. 1 gives the four possible sequences of four layers 
in any regular or irregular pattern, with the indication 
of their arrangement hh,/ch, h/c or/C/C. 

Suppose now that  the two parts on each side of the 
dotted line be displaced with respect to each other 
so that  a 'deformation or transformation stacking 
fault '  is created. 

The symbols of Fig. 1 for the close-packed layers of 
the upper part  have then to be changed in a manner 
corresponding with (2a) or (2b). The result is Fig. 2, 

(C) Faults of both type, s 

Imagine that,  during one-dimensional disordered 
'growth' an irregular pattern of close-packed layers is 
built up, and that  this pattern is afterwards altered 
by the appearance of 'deformation or transformation 
stacking faults'. 

In  § 4 we shall deal with the case in which (1) the 
irregular sequence is the one obtained in the case of a 
'two-layer' influence (Wilson, 1942; Hendricks & 
Teller, 1942); this means that  the pattern is one of a 
close-packed hexagonal or close-packed cubic crystal 
with 'growth faults', where the continuation of the 
irregular stacking of the close-packed layers is given 
by the rule 

X _ _  
> h probability 1 - ~ ,  

b probability ~; 

(2) the density of the 'deformation faults', introduced 
into the irregular sequence, is ft. 

Remembering that  the introduction of a 'fault '  of 
the second type has the effect of interchanging the 
arrangement h or /C of two layers, we obtain the 
following rule: 

X 

1-f i  , h,  (4a) 

- - 1 - , e  ~ k ,  (4~) 

3 , h', (44) 



X , _ _  

- - l - - a - -  

- - 1 - - f l  , k ,  

R.  G E V E R S  339 

(4e) If we take (1) into account we obtain the two 
formulae 

--l-fl ~ h ,  (49) 

fl , k', (4h) 

in which a layer which is a 'deformation fault '  is 
marked with a dash (X', h', k'). 

3. Calculat ion of Pm for a sequence wi th  't~rowth 
faul t s '  for  f o u r - l a y e r  i n f l u e n c e  

We shah first calculate the probabilities 0)i(i= 1 , . . . ,  4) 
of finding, when running through the crystal, a layer 
arranged with respect to its predecessors in a (kh h 
manner. 

A layer can only be hh-arranged if it continues 
h-wise a sequence of four layers which is arranged 
either in an hh. or a kh-manner. Thus, 

0)1 = 0)l(1-al)+0)~(1-a~) • 

In  the same way, 

0)~ = 0)3(1-a3)+0)4(1-aa),  
0)4 --~ 0)30~3+0)4a4 

and of course 

0)1+0)2+0)3+0)4  = I .  

From these relations we can calculate easily 

0)1 = (1-~2)(1-a4)t ,  0)2 = 0)3 = a l ( 1 - a 4 ) t ,  
0)4 = a l a 3 t  , (Sa) 

p~)  = lo~)_2(1--al)  ( 1 - - a l ) + p ~ ) _ 2 ( 1 - - a 2 ) ( 1 - - a 1 )  

+P~)-2(1-a3) (1-a2)+p~)_2(1-a4)(1-a2) ,  (7) 
and 

P~) = lo~)-2al(1 -aa)+P(m2)-2ag(1 - aa )  

+ p~)_2a3(1- a4)+ p~)_2 a4(1-  a4). (S) 

When the ruth layer is not A, say B, and is arranged 
in a k-manner, only the sequences ACB and CAB are 
possible. Thus either the (m-2 ) th  or the (m-1) th  
layer has to be A. 

We then have immediately two further relations: 

p(3)~_~o) ~1 a ~a .~(2) ~1 a ~ta _L~(3) ~1 
m ~ . r ' m - - 2 ~  - -  1 l  1 T F m - - 2 ~  - -  21  1 T F r a - - 2 ~  - - a3 )a2  

+i°(m4)2(l--a4)a2+i°(ml)la1+i°(m2)-1a2 = 0)3,  (9) 

p(a)-lt-a~(1) a a _~_a~(2) a a _Ln~(3) a a _L~(4) 
m z~'m--2 1 3 /~m--2 2 3T/sin--2 3 4T /Sm-2a4a4  

+~(3) a .~(4) ~ . (10) /'m--1 3~/Jm--1~4 ~ 0)4 

In these, the first term gives the probability that  the 
mth layer is A, hk (or kk) arranged; the sum of the 
four following terms that  the mth layer is B or C, 
not preceded by A, hk (or kk) arranged; the sum of the 
last two that  the mth layer is B or C, preceded by 
A, hk (or kk) arranged. 

Equations (6), (7), (8), (9) and (10) form a system 
which can be easily solved by the method used in our 
previous article (Gevers, 1952). We get 

8 
P m =  ~+27 C.x~, (11) 

n----1 

where xn are the roots of the characteristic equation* 

1 1 

x2-  ( l - a 1 )  2 - ( l - a 1 )  ( l - a 2 )  

- - a l ( l  - - a s )  x 2 - - a 2 ( 1 - - a 3 )  

a l x  + a~ (1 - a ~ )  a2x + a l  (1 - a ~ )  

0~ 1 a 3 a 2 a 3 

1 1 - 1  

- (1-ag.) (1 -as )  --(1--a~) ( l - a 4 )  0 

--as(1 --a4) --a4(1 --a4) 0 

X2 + a2 (1 - - a s )  a2(1 - - a4 )  0 

a 3 ~ + a 3 a 4  x 2 + a 4 x + a  2 0 

= 0  

where 

lit = ( 1 - a ~ ) ( 1 - a 4 ) + 2 a l ( 1 - a 4 ) + a l a  s . (5b) 

Pm will b e the probability that  two layers, m layers 
apart, are in the relationship A (B, C). . .  A (B, C) and 
p ( 0  the part ia l  probability that  the last A (B, C) is 
arranged with the three preceding layers in a (kh h 
manner. 

Thus, 
/)m = ~(1)_u ~(2)_u ~(3) ~_ ~(4) ~+,,, -,.+,,, -~ , , ,  -+.,,, • (6) 

If the ruth layer is A (zero layer A) and is arranged 
in an hh- (or kh-) manner, the (m-2 ) th  layer must 
also be A and can be related to its three predecessors 
in any of the four ways. 

o r  

x s + a4x 7 -  (1 - a 1 -  a 4 )  (1 - a I + a 4 ) z  6 

- -  [ a 4 ( ]  - a l ) ~ - a l ( 1 - a , . ) ( 1 -  a3)]x 5 

- [ a ~ ( 1 - a s )  2 + a2(1-  ~xl)2- oqa4(1 -a~)(1 - a s )  

- alas(1 - a~) (1 - a4)]z a 

+ asx a + a s x  9 + a~x + (as--  a4) 2(a 1 -  a~)9 = 0 .  (12) 

* After  this article had  been wr i t ten  in its original form, 
a paper  b y  Kak inok i  & K o m u r a  (1952) came to our  notice,. 
in which the  general  fo rm of the  equat ion  for an 'n-layer.  
influence '  was der ived b y  the  generalized m e t h o d  of Hendricks .  
& Teller. I t  can be p roved  t h a t  the  form given here can also, 
be der ived by  their  me thod .  

22* 
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Probability 

A or A' 

I 

° ÷  

A" 

A' A 

1 

Layer m 

Probabiiity 

+~, ,~ 
,~, ,~.~,~ 

Layer (m-4-1) .A" 
Probability (1-/9) Pm 

I 

Layer A 
(m+2) 1 

.,q" or.,~ 

~ l-Pro 
v I 

~q ' A A' 

I I 

A' A A' A A' 

P~+2 P;,+2 

( ~ :  Layer which is not A;,~A': $CorCS, neverBB, CC.) 

Fig. S. 

The results of Wilson (1942), Jagodzinski (1949b) 
and Gevers (1952) can be obtained as special cases 
(~1=~2=0C3=0~4; 0~1~----0¢ 2, 0~3=~4; ~ l = a ~ = l ,  a4=0). 

The C,'s are the solution of the system 

8 

C',x~ = P m - ~  (m = 0, 1, . . . ,  7).  (13) 
n - - - - ,  

The values of P~ can be calculated with the aid of 
(6), (7), (8), (9), (10), p(o i) =¢oi, p(10 = 0 (i = 1 , . . . ,  4) 
and (5). 

4. Calculation of P,,, for hexagonal  or cubic c lose-  
packed crystals  wi th  both types  of ' s tacking faults' 

Pm will again be the probability that  two layers, 
m layers apart, are in the relationship A (B, C ) . . .  
A (B, C). Two cases can occur: (1) the last layer is 

not a 'deformation fault ' :  probability 10a; (2) the last 
t layer is a 'deformation fault ' :  probability p=. Thus 

t 

P==T,,+T,, , .  (14) 

Consider now the scheme of Fig. 3. In this figure 
all possible transitions from layer m to layer (m+ 1) 

I x2+o~(l-~)x 
p(l-oOx 

1 

(1-~) (1-fl)x 

1 

are shown, and only those transitions from layer 
(m+ 1) to layer (m+2) leading to an A for the last 
layer. 

Near the vertical lines we indicate the transition 
probabilities for the special ways and (in brackets) 
the rules which are applied, while under each layer 
symbol (A, A', ~,  Jr') the corresponding occurrence 
probability is written. 

With the aid of the scheme of Fig. 3, we find imme- 
diately the two following relations: 

p,,+~ = (1-fl)Pm(1-aO (1-fl)+ flPmo~(1-fl) 
+[(1--~)(1--Pm)--pa+da(1--~) 
+LS(1-P, ,)-p~+I](1-~)(1-f l )  (15) 

and 

P~+2 = (1-f l )P~afl+flP, , (1-~)f l+[(1-f l )(1-P~) 
- p , . + z ] ( 1 - o O f l + L 6 ( 1 - t ' m ) - p ' , . + z ] @  . (lfi) 

Equations (14), (15) and (16) form a linear system 
which can be solved in the usual way (Gevers, 1952). 
We obtain 

Pm = ] + o , x ? + o ~ ? ,  (17) 
where x z and xs are the roots of the equation 

= 0  

-(1-#)(1-2~)(1-2~) 
f l (1-2a)  (1-2fl) 

- 1  
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o r  

x2+~x+(2~-l)(1-37) = 0 ,  (18a) 
where 

7 = 8 ( 1 - 8 )  • (lSb) 

If  fl = 0, we verify the  formula  given by  Wilson (1942) 
and  if ~ = 1, t h a t  given by  Paterson  (1952). ~ = 0 
would give a formula equivalent  to t h a t  of Paterson,  
bu t  for the  hexagonal  close-packed s tructure.  

6'1 and C2 are ob ta ined  by  solving the  sys tem 

C 1 + C 2 = § _ '  } (19) 
X l C 1  ~t_ X2C2  = • 

5. Calculation of Pm for hk-structure (SiC-4H 
type) with 'deformation stacking faults' 

In  an undis turbed  hk-crystal  we can meet  with  equal  
probabi l i ty-  

Layer  m m + l  m + 2  m + 3  m + 4  
-~ X > Z -~ X . . . .  (20a) 

X ~ Y _  -+ (2) (2) (1) 

(') Z -+ Y -+ X . . . .  (20b) 
(1) (2) (2) 

The numbers  in brackets  indicate  the  manner  (1 or 2) 
in which t h a t  par t icular  layer  m a y  shift:  

M a n n e r ( I ) :  X >Y, Y >Z, Z > X ;  

Manner  (2): X , Z, Y- - -~  X, Z ~ Y .  

We have t h a t  the  ( m + 4 ) t h  layer  will be an A 
(zero layer :  A) (1) when the mth  layer  is an A and the  
displacement  result ing from all the  faults  present  is 0 
(rood. a lat t ice vector),  or (2) when the mth  layer  is 
a B or C (or C or B) and the  result ing displacement  is 
d 2 (or dl) (rood. a lat t ice vector).  

We have,  if we take into account  (3), (20) and all 
the  possible ar rangements  of correct and faul ted layers, 

-Pm+,t = Pm[(1-fl)a +483(1-fl)3 + 8 '] 
+ (l-Pro)[2fl( l-f l)  3+83(1-8) 3+28s(1-8)] 

Pm+4-(1-37)2Pm = 7 ( 2 - 3 7 ) ,  (21a) o r  

where 

Thus 
7 = 8 ( 1 - 8 )  • (21b) 

4 

Pm= ~+ ~ Cnx'~, (22) 

where x~ are the roots of 

x a - ( 1 - 3 7 )  2 = O. (23) 

Po, P1, . . . ,  P3 can be calculated by  considering (20) 
(with m = 0), and by  taking (21a) into account  for 
the  last  four. 

We have  then  

P o = I ,  P I = O ,  P 3 = ½ ,  P a = 7 ,  ] 

P4 = 1 - 4 7 + 6 7 3 ,  P5 = 7 ( 2 - 3 7 )  ' / (24) 

P6 = ½(1-27+373) ,  P~ = 37(1-37+372), 
Ps = 1-87+3672-727a+5474. 

6. Calculation of Pm for h k k  structure (SiC-6H 
type) with 'deformation stacking faults' 

The same method  gives us 

Layer  
m m + l  m + 2  m + 3  m + 4  m + 5  m + 6  

-~ X -+ Z -+ Y - +  Z -~ X . . . ,  (25a) 
(3) (2) (2) (1) (1) 

X > Y - - - ~  Z -> X - +  Z -+ Y - )  X , (25b) 
(1) --> (1) (1) (2) (2) (2) . 

Z -~ Y ~ X - +  Z -> X , (25c) 
(D (3) (3) (2) (1) 

Pm+6 = Pm[(1--8)~+982(1--8)~+83(1--8)3+~3(1--8) 3 

+ 9 8 ' ( 1 - 8 )  3 + 86] + (1-Pro)  [38 (1 -8 )5  + 3 8 2 ( 1 - 8 )  ` 

+ 9 8 3 ( 1 - 8 )  3 + 3 8 ~ ( 1 - 8 ) 2 + 3 8 5 ( 1 - 8 ) ] ,  
o r  

Pm+~- (1 -37 )3Pm = 3 7 ( 1 - 3 7 + 3 7 ~ ) ,  (26a) 
where 

7 = 8 ( 1 - 8 )  • (265) 
Thus,  

6 
Pm= ~+ ~ C,x'~ , (27) 

n = l  

where xn are the  roots of 

x 6 -  ( 1 - 3 7 )  s = 0 .  (28) 
We have  then  

P0 = 1, P1 = 0, P2 = ~(1+27) ,  Ps  = ~ ( 1 - 7 ) ,  

P4 = ½(1+27-673) ,  Ps  = 7 ( 2 - 3 7 ) ,  

Pe = 1 - 6 7 + 1 8 7 3 - 1 8 7 s ,  ' P~ = 3 7 ( 1 - 3 7 + 3 7 3 ) ,  

Ps  = ½ ( 1 + 2 7 - 1 8 7 2 + 5 4 7 a - 5 4 7 4 ) ,  

P9 = ½(I-7+972-2773+2774), (29) 

P~o= ~(1 + 2 7 - 2 4 7 3 + 1 0 8 7 3 - 2 1 6 7 4 + 1 6 2 7 5 ) ,  

/)11= 7 ( 5 - 3 0 7 + 9 0 7 2 - 1 3 5 7 s + 8 1 7 a ) ,  

P12= 1 - 1 2 7 + 9 0 7 3 - 3 6 0 7 3 + 8 1 0 7 a - 9 7 2 7 5  

+4867~.  

7. Calculation of the diffraction intensity 

I t  has been proved by  Jagodzinski  (1949a, b) t ha t  the  
diffracted in tens i ty  is proport ional  to 

I = sin2 ½NIA1. sin3 ~_N2A~ ~1 + 2 Q .  sin 9 ½NsA s 
sin 3 ½A 1 sin 3 ½A 3 [ 3 sin 2 ½A 3 

+(1-Q)2JNsC'n,~ 1-2xn cos A~+z~J" (30) 
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w i t h  al ,  as, a3: t r a n s l a t i o n  vectors ,  
N1, Ns, N a: number of translations, 
s 0, s:  unit vectors in the direction of inci- 

dence and diffraction, 
H, K, L:  hexagonal indices, 

A, = (2~/;t)a,.  ( S - S o ) ,  

A1 = 2~H, A s = 2rtK, A 3 = 2rtL/no, (31) 

n: number of close-packed layers in the hexagonal 
cell, 

Q = { - ½  for H - K # 3 r a ,  

1 for H - K = 3 m .  

(A) H - K  = 3m 
There are sharp intensity peaks for A 3 = 0 (mod. 

2zt) and zero intensity elsewhere. 

(B) H - K  =t= 3m 
(1) The diffuse intensity varies a!ong the lines 

H, K = constant ( H - K  # 3m); L = variable, of the 
reciprocal lattice according to the sum in (30). 
Furthermore, we have then 

i 
~ sin s ½N1Al . sin s ½N~As 
o IdA3 = 2~tNa sin s ½A 1 sin 2 ½A, (32) 

since we have 

2 C , = P a  ½ =  1_ 4 = i  
$b 

if we take (13) into account. 
Thus, 

2 
I 1 3 ~  1 - x ,  . (33) 

= ,--[S~/dAa = 2--~'2 C, 1 - 2 x ,  cos A a + x  ~ 

¢o 

We can prove that  
n- -1  

C + 2 ~  D v cos pA a 
1 3 p=l (34) 

2~ 2 n 
A + 2 ~  B v cos pA3 

p=-I 

(n = degree of the characteristic equation), where 

n n - ?  

A ' =  .~  a~, Bp = .~, an. am+v, 
~'lb = O ~rct = O 

2 n  2 n - p  

C = 2 c,,,Pm, D~ = Z d~)Pm, 
m=0 m=0 , (35) 

2n  . n - - l / '  s \ 2  1 

I 
d~)x ~ = ( 1 - x  s) N / ~-~ a,x~-r) a,x'+v- ' 

9~r~-~-0 8 = 0  \ r = 0  / " 

when am(m = 0, 1, . . . ,  n) are the coefficients of 
n 

the characteristic equation .~, am x'~-~ = 0 and 
m = 0  

P,,,(m = 0, . . . ,  2n) can be calculated. 

(2) In  the case of hexagonal dose-packed or cubic 
face centred crystals with both types of 'stacking 
faults' we obtain, by substituting the result of § 4 
in equation (34), 

1 
2zt 

x { [ 3 a ( 1 - a ) + 3 ( 2 ~ - l ) 2 7 ( 2 - 3 7 ) ]  + 3 ( 2 a - 1 ) 7  cos A3}/ 
{[(2-  4a + 5 ~ ) -  3 ( 2 a -  1)27(2- 37) ] 
+2c~[2a-3(2~-1)?]  cos A s 

+ 2 ( 2 ~ -  1) (1-37) cos 2As}. [36] 
The maxima and minima for e are given by 

ds/dA 3 = 0 .  (37) 

With the aid of (23) and (24), (28) and (29), we 
obtain by substitution in equation (34): 

(3) For an hk-crystal: 

1 
2g 

× { 3 ? ( 4 - 1 8 7 + 3 6 7 " - 2 7 7 a ) - 9 ? ( 1 - 3 7 + 3 7 ~ ) c o s  A3 
+~? (2 -37 )  cos 2 A a - 3 y ( 1 - 3 y )  cos 3A3} / 
{1 +(1--37)a--2(1--37) " cos 4Aa}. (38) 

(4) For an hkk-crystal: 
1 

{97 (2 - 15746072-13573 + 16274- 81 y 5) - 3 7 ( 5  - 3 0 7  
+907 s -  13573+8174) cos Aa+672(4 - 187 
+367°-277S)cos 2 A 3 - 9 7 " ( 1 - 3 7 + 3 7 "  ) cos 3A 3 
+6ys(2 -- 9y+9yS) cos 4 A 3 - 3 7 ( 1 - 3 7 )  2 cos 5A3} / 

{1 + (1 -3y ) s -2 (1 -3y )3cos  6A3}. (39) 

8. Calculat ion of the probabi l i ty  p a r a m e t e r s  for  the 
various problems of the preceding sections 

(1) 'Growth faults'  with n = 4 

The formula (34) expresses e as a function of Aa, 
which can be measured. With the aid of e for 16 
different values of A 3, a homogeneous system of 16 
equations can be constructed. This will enable us to 
calculate the 17 unknown's A, B v, C, Dp apart from 
an indefinite factor. 

I f  A ' ,  B~, C', D'p is a solution of the system we 
have: 

8 

A + 2  ~ B p  cos pA8 
p = l  8 8 

A ' + 2  ~: B; cos pA3~,  11(cos A a - y p ) .  
p =I p =I 

Since 
8 8 

A 4 2  ~ B v cos ?A a =- 11 ( 1 - 2 x  v cos Aa+x~), 
p = 1  p = l  

the roots of the equation (12) are given by the systems 

{ ( l+x~) /2xp = yv (v = 1, . . .  8 ) .  (40) 
1%1 < ! 
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The coefficients, a 1, a2, a 3, a 4, of (12) enable us then 
to calculate the four transit ion probabilities ~ .  

(2) 'Growth and deformation or transformation stacking 
faults' in hexagonal close-packed and cubic face centred 
crystals 
(a) Hexagonal close.packing.--Broadened maxima 

occur for A a = 0 and A a = z~ (rood. 2~t), and 

1 ( 1 - ~ ) - 3 ( 1 - 2 a )  7 ] 
e° = 2---~" 3 [ ~ ÷ ( 1 - 2 ~ ) 7 ]  ' 

1 3 [ ( 1 - - ~ ) -  ( 1 - 2 ~ ) 7 ]  
e~ = 2z" c~+3(1-2~) 7 " 

(41) 

Thus ~ and fl can be calculated with the aid of (41). 

(b) Cubic close.packing.--Minima occur for A 3 - - 0  
and A 3 = 7~ (mod. 2~t); (41) is still valid and can 
eventually be used to calculate ~ and ft. Broadened 
maxima occur for 

A 3 ~--4-0 (mod. 27t), (42) 

where 0 is the root of (37), which will move towards 
A 3 = ±2~/3  (rood. 2~) as c~-~ 1 and fl-+ 0 or 1. 

With  the aid of (42) and e±0, ~ and fl can again 
be calculated. When ~ = 1 (face centred cubic with- 
out 'growth faults'), we obtain the same equation (18), 
but  the further calculations are different (Paterson, 
1952). 
(3) 

For an hk-crystal we obtain from (38): 

1 ½ - 3 7 ( 1 - 3 7  ) 1 ½ - 7 ( 2 - 3 7 )  
eo = 2---~" 3 7 ( 2 - 3 7 )  ' e±~/2 = ~ 7 (2_37  ) 

1 3 [ ½ - 7 ( 1 - 7 ) ]  
e . = ~ - ~  7 (2_37  ) • 

(4) 
For  an hkk-crystal we obtain from (39): 

(43) 

1 7 ( 4 - 9 7 )  
e 0 = ~ 3 ( 1 - 3 7 + 3 7 2 )  ' 

1 2 - 1 4 7 + 5 1 7 2 - 5 4 7 3  
e±2./e = ~ "  187 (1_37+372)  , 

1 4 -107+3079" -2773  

e== ~-~" 97(1_374372)  , 
1 2--107+2372÷1873 (44) 

e±~/3 = -2-~" 67(1_37+379) • 

With  one of the formulae (43) and one of the formulae 
(44) we can calculate fl in either case. 

The author is grateful to Prof. W. Dekeyser for the 
stimulating interest taken in this work, which is par t  
of a research program (C.E.S.) supported by I .R.S.I .A. 
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A Direct  Approach  to the D e t e r m i n a t i o n  of Crystal  S tructures  
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A direct method of solution of the X-ray crystallographic problem is described, which consists 
in tabulating the complete function connecting the structure factor with the atomic positions. 
The successive steps of the solution can be interpreted as intersections of (/V--1)-dimensional sur- 
faces in /V-dimensional space, where N is the number of unknown co-ordinates. A card index, 
graphs and tables have been prepared and published for a one-dimensional unit cell with no centre 
of symmetry containing up to four equal point atoms and, with centre of symmetry, up to ten equal 
point atoms per cell. Centrosymmetric structures with up to twenty atoms per cell can be solved 
by a single convolution of the above tables. 

In troduc t ion  

The determination of crystal structures and the 
corresponding phase problem of X-ray  crystallography 

* Imperial Chemical Industries Research Fellow. Present 
address: Physics Department, Pennsylvania State Universivy, 
State College, Pennsylvania, U.S.A. 

has been at tacked in the past  by  a var ie ty  of methods. 
If the direct methods applicable to special cases, such 
as the heavy-atom and the isomorphous-replacement 
methods, are not  considered, the usual methods are 
those of trial and error, Pat terson synthesis and its 
variants,  Harker -Kasper  inequalities, solution of poly- 
nomials, and statistical methods. 


