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The Diffraction of X-rays by Close-packed Crystals Containing both ‘Growth
Stacking Faults’ and ‘Deformation or Transformation Stacking Faults’

By R. GEVERs
Laboratorium voor Kristalkunde, Rozier 6, Gent, Belgium

(Received T July 1953 and in revised form 10 October 1953)

The general theory is developed of the X-ray diffraction effects exhibited by (a) different close-
packed structures (k, k, hk, hkk, hhk, hhkk types) containing ‘growth stacking faults’, assuming a
four-layer influence; (b) hexagonal and close-packed cubic crystals in which ‘growth stacking
faults’ and ‘deformation or transformation stacking faults’ coexist; and (¢) k- and hkk-crystals
(S8iC—4H and SiC—6H types) containing ‘deformation stacking faults’,

The manner in which a ‘fault’ of the first or second type disturbs the regular sequences of the
layers is stated in a general way. Expressions are derived for the reciprocal-space intensity dis-
tribution as a function of the parameters (four, two, one, one in the different cases) which
describe the demsities of the faults. It is shown how these parameters can be determined
from measurements of the X-ray intensities or the displacements of the peaks of the diftuse re-

flexions.

1. Introduction

If a crystal lattice can be described as the super-
position of close-packed layers in a well defined
manner, stacking ‘disorder’ arises whenever errors are
introduced into the regular sequence of the layers.

2. Influence of the ‘faults’ upon the sequence of
the layers

The notation % or k means that the layer is arranged
with respect to the two preceding ones in a hexagonal
or cubic manner. The regular sequences of the layers
in a close-packed crystal can then generally be re-
presented by symbols, e.g. hkk (Jagodzinski, 1949a),
and this means that a regular sequence can be con-
structed by periodic repetition of that prescription,
starting with two layers.

The irregular sequence of the layers in a close-packed
crystal can however only be described with the aid
of the transition probabilities, which define the one-
dimensional disorder.

Two types of ‘faults’ will be considered here.

(4) ‘Growth stacking faults’

A ‘stacking fault’ is a ‘growth fault’ if it arises
during growth.

We shall say that an ‘n-layer’ influence is present
whenever the way in which a new layer is added
depends on the arrangement of the n preceding ones.
A ‘growth fault’ occurs when the growth prescription
is not followed in the new layer.

Since 7 layers may be arranged in 2% ways (kh),,
we have to introduce in this case 2"~% parameters, o;,
which are the transition probabilities for continuing
the sequence in the cubic way. The irregular sequence
is then described statistically by the expressions w,,
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which are the probabilities that n successive layers
are in a (kh); arrangement.

Wilson (1942) and Hendricks & Teller (1942) dealt
with n = 2, Jagodzinski (19495) with » = 3 and
Gevers (1952) treated two special cases » = 4 and
n = 6.

In § 3 of this article we shall give the general
calculations for » = 4, using the method of Wilson
(1942).

In this case the continuation of the irregular stacking
of the close-packed layers is described by the rule:

—> h probability 1—o«; (1a)

(18)
if (kh), = hh, (kh), = kh, (kh), = Rk, (kh), = kk. (Lc)

kh);——
(R); ‘—» k probability «;

(B) ‘Deformation or transformation stacking faults’

Imagine an extended block of a crystal based on
any pattern, regular or irregular. If one half moves
relative to the other, so that the discontinuity is
confined to one layer only, we have a ‘deformation
fault’ occurring at the discontinuity and characterized
by a continuance of the displacement throughout
subsequent layers.

If the displacement is so that one part of the crystal
shifts out of the hollows of the layer beneath it into
a possible neighbouring set of hollows of the other
type, the ‘fault’ is a ‘stacking fault’ and the result is
a change of type in the layers, beginning with the one
in which the discontinuity occurs.

Symbolically we have

either A-B, B->C,C—~A4, (2a)

or A-C,B—+A4, C—+B, (20)
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Both displacements can be characterized by a vector,
respectively

d, = {a,+3a,
and

d; = 3a,+1a,

(a,, @,: translation vectors of the close-packed layer).
It is clear that we have:

d,+d, =4d,, (3a)
d,+d, = 0 (mod. a lattice vector), (3d)
dy+d, = d; . (3¢)

This type of ‘fault’ can be produced either during
plastic deformation or during certain phase transforma-
tions or even spontaneously at an appropriate tem-
perature.

A ‘deformation or transformation fault’ not only .

changes the arrangement (k or k) of the layer in which
the discontinuity occurs, but also that of the next
one.

—h LY.

N ¢
k .Z...
XY —— .
: —
LN
FLX..
Fig. 1.
_ k¥ X
LI
LI,
XY —— .
—Z
AL X
NN,
Fig. 2.

Indeed, when X, Y, Z stand respectively for 4 (B, C),
BorC(CorA,AorB),CorB(AorC,BorA),

Fig. 1 gives the four possible sequences of four layers
in any regular or irregular pattern, with the indication
of their arrangement hh, kh, kk or kk.

Suppose now that the two parts on each side of the
dotted line be displaced with respect to each other
so that a ‘deformation or transformation stacking
fault’ is created.

The symbols of Fig. 1 for the close-packed layers of
the upper part have then to be changed in a manner
corresponding with (2a) or (2b). The result is Fig. 2,
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where the arrangements of the four layers are again
indicated.

This scheme proves clearly that the arrangement
of the layer in which the discontinuity occurs and that
of the next one are both changed (k — &, k — &). The
arrangement kb or k of the other layers is not altered
by the process, since the three layers, which form the
arrangement % or k, are all either displaced or not.

From now on we shall call the layer itself in which
the discontinuity occurs ‘a deformation or transforma-
tion stacking fault’, and it will be marked with a dash
A . LK E).

Paterson (1952) has considered the case of a close-
packed cubic crystal with randomly distributed ‘de-
formation stacking faults’.

In §§ 5 and 6 we shall deal with the pattern of the
kk- and hkk-type (ABAC and ABCACB) (SiC-4H and
SiC-6H type), where the regular sequence is disturbed
by the occurrence of randomly distributed ‘deforma-
tion faults’ with density §.

(C) Faults of both types

Imagine that, during one.dimensional disordered
‘growth’ an irregular pattern of close-packed layers is
built up, and that this pattern is afterwards altered
by the appearance of ‘deformation or transformation
stacking faults’.

In § 4 we shall deal with the case in which (1) the
irregular sequence is the one obtained in the case of a
‘two-layer’ influence (Wilson, 1942; Hendricks &
Teller, 1942); this means that the pattern is one of a
close-packed hexagonal or close-packed cubic crystal
with ‘growth faults’, where the continuation of the
irregular stacking of the close-packed layers is given
by the rule

———> & probability 1—«,
X
——— k probability «;

(2) the density of the ‘deformation faults’, introduced
into the irregular sequence, is B.

Remembering that the introduction of a ‘fault’ of
the second type has the effect of interchanging the
arrangement h or k of two layers, we obtain the
following rule:

1-8 k, (4a)
|
X B k, (4b)
1-g k, (40)
(4.9
B k, (4d)
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1-8 kE, ()
11—«
B K, (4f)
X —
1 _ﬂ k ’ (49)
&
B K, (4k)

in which a layer which is a ‘deformation fault’ is
marked with a dash (X', &', &').

3. Calculation of P,, for a sequence with ‘growth
faults’ for four-layer influence

We shall first calculate the probabilities w;(:=1, .. .,4)
of finding, when running through the crystal, a layer
arranged with respect to its predecessors in a (kk);
manner.

A layer can only be hh-arranged if it continues
h-wise a sequence of four layers which is arranged
either in an hk- or a kh-manner. Thus,

oy = y(l—0y)+wy(l—a,) .
In the same way,

Wy = wz(l—oa3)+ws(l—u,),
Wy = W3zkg+Wy0y ,

and of course
w1+w2+w:;+(04 = 1 .

From these relations we can calculate easily

01 = (1=a,)(1—oy)t, wy = w3 = oy (l—ax,)t,
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If we take (1) into account we obtain the two
formulae

PR = PR (1—0) (1~ 0ty) + PR o(1—oxp) (1 —0xy)

+ 0 o(1—003) (1—0g) + 03 o (1—x) 1 —axy) ,  (7)
and

PR = PR a0ty (1—0rg) + PP g0rp(1 — )
+ P o0ta(1—00g) + DD p0,(1—0xy).  (8)

When the mth layer is not 4, say B, and is arranged
in a k-manner, only the sequences ACB and CAB are
possible. Thus either the (m—2)th or the (m—1)th
layer has to be 4.

We then have immediately two further relations:

PR +PR o (1— o) oy + PR (1 —05) 6y + D55 (1 —xg)cx,
+ PR (L—ag)o+ PG 106+ D2 005 = w5, (9)

DR+ DR 201 %5+ DR 5 kg 003+ DS 200004+ DD 5 g,

+PRD 10+ P 00y = g . (10)

In these, the first term gives the probability that the
mth layer is A, hk (or kk) arranged; the sum of the
four following terms that the mth layer is B or O,
not preceded by 4, kk (or kk) arranged ; the sum of the
last two that the mth layer is B or O, preceded by
A, hk (or kk) arranged.

Equations (6), (7), (8), (9) and (10) form a system
which can be easily solved by the method used in our
previous article (Gevers, 1952). We get

8
P,=3+3C2", (11)
n=1

Wy = xjgt, (5a) where x, are the roots of the characteristic equation*
1 1 1 1 -1
P=(1-0q)? —(l-o))(1—0p) —(l—op)(l—arg) —(l—xxs)(1—ax,) O
=0y (1—or5) 22—y (1—axy) —og(l—org) —og(l—oxg) 0j=0
axtoy(l—oy) ozt (l—oy) 22400y (1—0x4) ool —ox,) 0
Oy 0y Gg0in Cg®+00q 04 22+ o2+ ol 0
where or

1/t = (I—ap) (1 —g) + 20, (1 —xg) +0ty%5 . (5B)

P, will be the probability that two layers, m layers
apart, are in the relationship 4 (B, C)...4 (B, 0) and
P, the partial probability that the last 4 (B, C) is
arranged with the three preceding layers in a (kh),
manner.
Thus,
Py = o0+ o2+ P29 ©)

If the mth layer is A (zero layer A) and is arranged
in an hh- (or kh-) manner, the (m—2)th layer must
also be 4 and can be related to its three predecessors
in any of the four ways.

@8+ g@” — (1 — oty — otg) (1 — 0ty + 0, )c®
—[oea(l—0y)?— 0y (1 —0xp) (1 — ) ]2®
~[og(1—o)2+04(1 —01)? —ot104(1 — oxp) (1 —xg)
—oog(1—oxp) (1 — o) ]2t

+a523+ 2% + a3+ (dg—0g) 2y —0x,)2 = 0. (12)

* After this article had been written in its original form,
a paper by Kakinoki & Komura (1952) came to our notice,,
in which the general form of the equation for an ‘n-layer-
influence’ was derived by the generalized method of Hendricks:
& Teller. It can be proved that the form given here can also,
be derived by their method.

22¢
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bmt2 pm+2
(A : Layer which is not A; AA: BCorCB, neverB8B,CC)

Fig. 3.

The results of Wilson (1942), Jagodzinski (19495)
and Gevers (1952) can be obtained as special cases
(y=0pg=03=04; Xy =0g, Bg=0y; Gy =0p=1, x,=0).

The C,’s are the solution of the system

8
2Cat=P,—%+ m=0,1,...,7). (13)
n=1
The values of P, can be calculated with the aid of
(6), (7), (8), (9), (10), 2P = w;, PO =0 (i = 1, ..., 4)
and (5).

4. Calculation of P,,, for hexagonal or cubic close-
packed crystals with both types of ‘stacking faults’

P,, will again be the probability that two layers,
m layers apart, are in the relationship 4 (B, 0)...
4 (B, C). Two cases can occur: (1) the last layer is

not a ‘deformation fault’: probability p,,; (2) the last
layer is a ‘deformation fault’: probability p,,. Thus
Pm = pm+p1ln . (14)

Consider now the scheme of Fig. 3. In this figure
all possible transitions from layer m to layer (m+1)

|t +a(l-fe  (1-a)(1-f)e
22+ o

pl—a)z
|5 :

are shown, and only those transitions from layer
(m+1) to layer (m+2) leading to an 4 for the last
layer.

Near the vertical lines we indicate the transition
probabilities for the special ways and (in brackets)
the rules which are applied, while under each layer
symbol (4, A’, 4, 4’) the corresponding occurrence
probability is written.

With the aid of the scheme of Fig. 3, we find imme-
diately the two following relations:

P2 = (l—ﬂ)Pm(l_‘x)(l—ﬂ)'*'ﬂpm(x(l—ﬂ)
+[(1-B)(1=Pp)—Pui]x(1—B)
+[BA~Pp)~Ppia] (1—&) (1-B)

and

Pmiz = (1=B)Prnotf+BPn(1—x)f+[(1—) (1~ P,,)
~Pun](1=0)f+[f(1~Pp)=prplaf.  (16)
Equations (14), (15) and (16) form a linear system

which can be solved in the usual way (Gevers, 1952).
We obtain

(1)

P = 3+0127+ 0l
where x, and z, are the roots of the equation
—(1-8)(1-2x)(1-2p)
B(1~20)(1—28) | = 0
-1

(7
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or
22 +ox+2x—1)(1-3y) = 0,

y = B1—B). (180)

If g = 0, we verify the formula given by Wilson (1942)
and if &« =1, that given by Paterson (1952). &« = 0
would give a formula equivalent to that of Paterson,
but for the hexagonal close-packed structure.

C, and C, are obtained by solving the system

0, + 0= £, }
x101+z202 = —% .

(18a)
where

(19)

5. Calculation of P,, for hk-structure (SiC-4H
type) Yvith ‘deformation stacking faults’

In an undisturbed hk-crystal we can meet with equal
probability :

Layer m m+l m+2 m+3 m+4
|—>X——>Z-—>X vevs (20a)
€
X y _‘ (&) (€] 1)
WLz LY LX.... (205)

[6)) 2 @)

The numbers in brackets indicate the manner (1 or 2)
in which that particular layer may shift:

Manner (1): X—Y, Y—2Z, Z—X;
Manner 2): X—Z, Y ——X, Z-—7Y,

We have that the (m+4)th layer will be an 4
(zero layer: A) (1) when the mth layer is an A and the
displacement resulting from all the faults present is 0
(mod. a lattice vector), or (2) when the mth layer is
a B or C (or C or B) and the resulting displacement is
d, (or d,) (mod. a lattice vector).

We have, if we take into account (3), (20) and all
the possible arrangements of correct and faulted layers,

Py = Py[(1-p)*+482(1-B)+ ']
+(1-Py)[28(1-)*+F*(1—B)*+23(1-p)]

or P, —(1-39y)?2P, =y(2-3y), (2la)
where
y=p1-p). (218)
Thus
4
P, =}+ 3 Cpay, (22)
n=1
where z, are the roots of
22— (1-3y)2=0. (23)

Py, P,, ..., Pg can be calculated by considering (20)
(with m = 0), and by taking (2la) into account for
the last four.

We have then
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Py=1,P,=0,P,=}, P, =y,
| Py=1-4y+6y% Py = y(2-3y),
Py = $(1-2y+3y?), Py = 3p(1-3y+3y?),
Py = 1-8y+36y2—T729%+5494 .

(24)

6. Calculation of P,, for hkk structure (SiC-6H
type) with ‘deformation stacking faults’

The same method gives us
Layer
m m+1l m+2 m+3 m+4 m+5 m+6

X >Z>Y—>Z->X...
@) @) (2) 1) @

, (25a)

X—»Y—-4>Z->X->2Z->Y->X..., (25D
@ ) @ @ (2) @ .

> Z > Y >X>Z >X...
@ @) (2) @) (63}

Ppig = Ppl(1-B)°+962(1-B)*+B3(1—F)°+4°(1-5)?
+9p84(1-4)*+ %]+ (1—-P,)[34(1-B)*+38*(1-p)*
+94%(1-4)*+344(1-B)*+3B°(1-p)]

» (25¢)

or
P, ¢—(1-3y)*P, = 3y(1-3y+3y?), (26a)
where
y =p(1-p). (260)
Thus,
6
Pm = %+20n-’52', (27)
n=1
where z,, are the roots of
26—(1-3y)3=0. (28)
We have then
Py =1, P, =0, P, = }(1+2y), Py = }(1-y),
P, = §(1+2y—6y?), Py = y(2-3y),
Py = 1-6y+18y2—-18y%, P, = 3p(1—3y+342),
Py = 3(1+2y—18y2454y3—-5491),
Py = I (1—p+992-2T7p3+27%), (29)

Pio= }(142y—2492+108y3—2164+1625),

Pi= p(5—30y+90y2—135y3+814),

Pj,— 1—-12y+902—36073+810p4—97245
+486y5 .

7. Calculation of the diffraction intensity
It has been proved by Jagodzinski (1949a, b) that the
diffracted intensity is proportional to
I sin® {N, 4, sin® %NzAz{l +2Q sin® }N;4,
~ sin2}4, sin? 34, 3 sin? $ A4,

1-22
1—2x, cos A3+xﬁ}’ (30)

+(1-Q) 2 N;C,
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with a,, a,, a;: translation vectors,
N,,Ny, N;: number of translations,
8y, 8: unit vectors in the direction of inci-
dence and diffraction,
H,K,L: hexagonal indices,
Av = (27‘5/2.)%‘ (s_so) )
A, =2aH, A, = 27K, Ay = 2nL|n, (31)

n: number of close-packed layers in the hexagonal
cell,
0-|

(4) H-K =3m
There are sharp intensity peaks for 4; = 0 (mod.
27) and zero intensity elsewhere.

—% for H—-K % 3m,
1 for H—K =3m.

(B) H-K + 3m

(1) The diffuse intensity varies along the lines
H, K = constant (H—K = 3m); L = variable, of the
reciprocal lattice according to the sum in (30).
Furthermore, we have then

2 _ gin2 3N, 4, sin? 4N, 4,
So I, = 2N, " AL S0 (32)
since we have
S0, =Pl =1-} -3}
n
if we take (13) into account.
Thus,
I 1 3 1—a?
£ =5 =55 30— 5. (33)
S 1d4, 2% 2% 1—2x, cos Ag+a2
()]
We can prove that
n—1
3 C+23 D, cos p4,
LI A = (34)
27 2 n
A+223 B, cos p4,
p=1

(n = degree of the characteristic equation), where

n=p
4= Za,,,,B =20 Cpip,
m=0 m=0
0 =3 0nP D, = SuoP,,
m=0 m=0 (35)
2n n—-1s & 2
2 Cp ™= (l—xz) > ( 2a )
m=0 8=
- 8tp
2 d@)x"‘ (1 —xz) > ( > a,.:v’") ( > a,,x‘“’"’) ,
m=0 §=0 \r=0 r=0

when a,(m=0,1,...,n) are the coefficients of

the characteristic equation Z a,x"™ =0 and
m=0
P,(m =0, ...,2n) can be calculated.
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(2) In the case of hexagonal close-packed or cubic
face centred crystals with both types of ‘stacking
faults’ we obtain, by substituting the result of § 4
in equation (34),

1

* =2z

X {[Bo(1—x)+3(20c—1)2p(2—37)] +3(2x—1)y cos A3}/
{[(2—4x+5062)—3(20—1)2p(2—3y)]
+2x[26—3(20x—1)y] cos A,

+2(2x—1)(1—3y) cos 24,} . [36]
The maxima and minima for ¢ are given by
def/dAy3 =0, (37)

With the aid of (23) and (24), (28) and (29), we
obtain by substitution in equation (34):
(3) For an hk-crystal:

_ 1
= %n
x {3y(4—18y+36y2—27y%)~9p(1—-3y+3y%)cos 4,
+39(2—38y) cos 2 A3—3y(1—3y) cos 345}/

{1+(1—3p)2—~2(1-3y)2 cos 44,}.

(4) For an hkk-crystal:
1

&=—X
2n

{97(2—-15y+609%—135y3+162y*—819%) —3y(5—30y
+9092—-135y3+8194) cos A;+6y%(4—18y
+36y2—27y%)cos 24;—~99%(1 -3y +3y?) cos 34,
+692(2 —9p+9y?)cos 44,—3y(1—3p)? cos 54}/

{14+(1-3y)8—2(1—3y)%cos 643} . (39)

(38)

8. Calculation of the probability parameters for the
various problems of the preceding sections

(1) ‘Growth faults’ with n = 4

The formula (34) expresses ¢ as a function of 4,
which can be measured. With the aid of ¢ for 16
different values of 4,, a homogeneous system of 16
equations can be constructed. This will enable us to
calculate the 17 unknown’s 4, B,, C, D, apart from
an indefinite factor.

If A4',B, (", D, is a solution of the system we
have:

A+2ZB cos pAg

~A4'+2 ZB cos pA, ~H(cosA3 —¥p) -
p=1
Since

A+2 Z,‘B cos pA, = H(l 2z, cos Ag+x}) ,
p= p=1
the roots of the equation (12) are given by the systems

{(1+:cf,)/2xp =Y,

=1,..
I, < 1 4

L8). (40
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The coefficients, a,, a,, a3, a,, of (12) enable us then
to calculate the four transition probabilities ;.

(2) ‘Growth and deformation or transformation stacking
faults’ in hexagonal close-packed and cubic face centred
crystals
(@) Hexagonal close-packing.—Broadened maxima

occur for 4, = 0 and 4; = n (mod. 27), and

1 (1—a)—3(1-2x)y

%= on  Blat(1—-2x)y] )
1 3[(A—a)—(1—2ax)y]
T 2 a+3(1—2a)y

Thus « and 8 can be calculated with the aid of (41).

(b) Cubic close-packing.—Minima occur for 4; = 0
and 4; =7 (mod. 2n); (41) is still valid and can
eventually be used to calculate « and B. Broadened
maxima occur for

Ay = +0 (mod. 27), (42)
where 0 is the root of (37), which will move towards
Ay = +27/3 (mod. 27) as « — 1 and 0 or L.
With the aid of (42) and e,4, « and f can again
be calculated. When « = 1 (face centred cubic with-
out ‘growth faults’), we obtain the same equation (18),
but the further calculations are different (Paterson,
1952).
3)
For an hk-crystal we obtain from (38):

Acta Cryst. (1954). 7, 343

343
oo L 3=8y1=3y) 1 }-7@-3y)
T on  3p(2=3y) T 2m  p(2-3y)
_1 3[3—y(Q-y)]
"o ye-3
4)
For an hkk-crystal we obtain from (39):
1 y4-9)

= 27 3(1-3y+39%)"
1 2-14y+51y2—54y3
Ex2mi8 = 90" T18y(1—3y+397%)
1 4-10p+30y2-27y3
T on’ T 9y(1-3y+3pY
1 2-10p+23y2+18y°
Cx28 = 90 T 6y(1—3y+3y%) (44)

With one of the formulae (43) and one of the formulae

Ex

(44) we can calculate § in either case.

The author is grateful to Prof. W. Dekeyser for the
stimulating interest taken in this work, which is part
of a research program (C.E.S.) supported by I.R.S.I.A.
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A Direct Approach to the Determination of Crystal Structures

By V. Vanp*
Chemistry Department, The University, Glasgow W. 2, Scotland

(Received 13 June 1953)

A direct method of solution of the X-ray crystallographic problem is described, which consists
in tabulating the complete function connecting the structure factor with the atomic positions.
The successive steps of the solution can be interpreted as intersections of (N —1)-dimensional sur-
faces in N-dimensional space, where N is the number of unknown co-ordinates. A card index,
graphs and tables have been prepared and published for a one-dimensional unit cell with no centre
of symmetry containing up to four equal point atoms and, with centre of symmetry, up to ten equal
point atoms per cell. Centrosymmetric structures with up to twenty atoms per cell can be solved

by a single convolution of the above tables.

Introduction

The determination of crystal structures and the
corresponding phase problem of X-ray crystallography
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has been attacked in the past by a variety of methods.
If the direct methods applicable to special cases, such
as the heavy-atom and the isomorphous-replacement
methods, are not considered, the usual methods are
those of trial and error, Patterson synthesis and its
variants, Harker—Kasper inequalities, solution of poly-
nomials, and statistical methods.



